Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes.
نویسندگان
چکیده
The extensive genetic and molecular characterization of the flavonoid pathway's structural and regulatory genes has provided some of the most detailed knowledge of gene interactions in plants. In maize flavonoid biosynthesis, the A1 gene is independently regulated in the anthocyanin and phlobaphene pathways. Anthocyanin production requires the expression of the C1 or PI and R or B regulatory genes, whereas phlobaphene production requires only the P regulatory gene. By deletion analysis of the A1 promoter, we show that the sequences between -123 and -88 are critical for activation by anthocyanin and phlobaphene regulatory genes. Linker-scanner mutations indicated that the -123 to -100 region is more important for transactivation by the P protein. The -98 to -88 region is more important for B/C1 transactivation and shows a strong homology with the region of the Bz1 anthocyanin structural gene promoter shown to be activated by B/C1 and not by P. We identified a 14-bp consensus sequence that is also present in the promoters of three other genes in the anthocyanin pathway, and we propose a model for how the flavonoid regulatory proteins interact with the promoters of the structural genes.
منابع مشابه
A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway.
By screening for new seed color mutations, we have identified a new gene, pale aleurone color1 (pac1), which when mutated causes a reduction in anthocyanin pigmentation. The pac1 gene is not allelic to any known anthocyanin biosynthetic or regulatory gene. The pac1-ref allele is recessive, nonlethal, and only reduces pigment in kernels, not in vegetative tissues. Genetic and molecular evidence ...
متن کاملEvidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins.
The enzyme-encoding genes of two classes of maize flavonoid pigments, anthocyanins and phlobaphenes, are differentially regulated by distinct transcription factors. Anthocyanin biosynthetic gene activation requires the Myb domain C1 protein and the basic helix-loop-helix B or R proteins. In the phlobaphene pathway, a subset of C1-regulated genes, including a1, are activated by the Myb domain P ...
متن کاملActivation of the maize anthocyanin gene a2 is mediated by an element conserved in many anthocyanin promoters.
Two transcription factors, C1 (a Myb-domain protein) and B (a basic-helix-loop-helix protein), mediate transcriptional activation of the anthocyanin-biosynthetic genes of maize (Zea mays). To begin to assess the mechanism of activation, the sequences required for C1- and B-mediated induction have been determined for the a2 promoter, which encodes an anthocyanin-biosynthetic enzyme. Analysis of ...
متن کاملThe Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize.
The Viviparous-1 (Vp1) gene is required for expression of the C1 regulatory gene of the anthocyanin pathway in the developing maize seed. We show that VP1 overexpression and the hormone, abscisic acid (ABA), activate a reporter gene driven by the C1 promoter in maize protoplasts. Cis-acting sequences essential for these responses were localized. Mutation of a conserved sequence in the C1 promot...
متن کاملFunctional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins.
The B, R, C1, and Pl genes regulating the maize anthocyanin pigment biosynthetic pathway encode tissue-specific transcriptional activators. B and R are functionally duplicate genes that encode proteins with the basic-helix-loop-helix (b-HLH) motif found in Myc proteins. C1 and Pl encode functionally duplicate proteins with homology to the DNA-binding domain of Myb proteins. A member of the b-HL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 6 11 شماره
صفحات -
تاریخ انتشار 1994